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A recent calculation, in the weak-noise limit, of the rate of escape of a particle 
over a one-dimensional potential barrier is extended by including an inertial 
term in the Langevin equation. Specifically, we consider a system described by 
the Langevin equation m2 + 2 + V'(x) = 4, where ~ is a Gaussian colored noise 
with mean zero and correlator ( ~ ( t ) ~ ( t ' ) ) = ( D / z ) e x p ( - l t - t ' [ / ~ ) .  A path- 
integral formulation is augmented by a steepest descent calculation valid in the 
weak-noise (D ~ 0) limit. This yields an escape rate F ~  exp(--S/D), where the 
"action" S is the minimum, over paths characterizing escape over the barrier, of 
a generalized Onsager-Machlup functional, the extremal path being an "instan- 
ton" of the theory. The extremal action S is calculated analytically for small m 
and z for general potentials, and numerical results for S are displayed for 
various ranges of m and ~ for the typical case of the quartic potential V(x)= 
--X2/2 4- X4/4. 

KEY W O R D S :  Langevin equation; path integral; colored noise; instanton. 

1. I N T R O D U C T I O N  

The problem of calculating the escape rate for activation over a potential 
barrier due to colored external noise has been the focus of an explosion of 
interest (and much controversy) in recent years. ~ 10),2 The difficulties stem 
from the absence of a simple generalization of the Fokker-Planck equation 
when the noise is colored (i.e., has nonzero correlation time), which is in 
turn a consequence of the non-Markov character of the process. Very 
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2 See ref. 1 for recent reviews on the topic of external noise. 
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recently, however, a new approach has been introduced, (u) in which a 
path-integral formulation is combined with a steepest-descent approach to 
obtain exactly the leading dependence of the escape rate F on the noise 
strength D for D--*0, namely F ~ e x p ( - S / D ) ,  where the "action" S 
reduces to the height of the potential barrier only for white noise. More 
generally, S is given by the minimum, over paths characterizing escape 
over the barrier, of a generalized "Onsager-Machlup functional ''(12) that 
plays a role analogous to the action in the path-integral formulation of 
quantum mechanics (and will be termed such below). The corresponding 
extremal path is an "instanton" of the theory. (n)'3 

So far, most effort as far as colored noise is concerned has been direc- 
ted at the overdamped limit, in which the Langevin equation (see below) 
involves only a first derivative with respect to time. In this paper, we apply 
the recently developed path-integral methods to derive, for the first time, 
results for the escape rate when an inertial term (involving a second time 
derivative) is included in the Langevin equation. The white-noise limit of 
this problem has been studied extensively, with renewed interest in recent 
years(14 19) following Kramers's original classic work. (2~ Apart from some 
analogue simulations, (21) however, there seems to have been very little 
work including both colored noise and inertial effects. 

We consider a system described by the Langevin equation 

m2 + ~2 + V'(x) = ~(t) (1) 

where ~(t) is a colored Gaussian noise with zero mean. For definiteness, we 
will assume that the noise correlator has the standard exponential form 

( ~(t) ~(t') ) = (D/r) e x p ( -  I t -  t'l/r) (2) 

corresponding to the simplest non-Markov process. (=) These equations 
describe the motion of a damped particle of mass rn moving in a potential 
V(x) under the influence of a stochastic force ~(t). [Note that in (1) and 
hereafter dots and primes represent derivatives with respect to t and x, 
respectively.] Henceforth we choose units of time such that c~= 1. We 
consider the particle to be initially located at a minimum of V, and are 
interested in calculating the escape rate F over a potential barrier. A typical 
potential of interest is shown in Fig. 1. The process we are considering is 
the activation of a particle, initially located at the point a in the left-hand 
well, over the barrier and into the right-hand well. 

In the white noise limit ( r=0) ,  Eq. (1) describes a Markov process 
and we may use the Fokker-Planck equation to find the conditional joint 

3 See refs. 13 for  a genera l  i n t r o d u c t i o n  to i n s t a n t o n  m e t h o d s .  
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Fig. 1. Typical potential considered in this paper. The rate of escape F from the left-hand 
well is governed by the "action" S of the instanton associated with the "uphill" path labeled 
1: F~ exp(- S/D). The instanton associated with the "downhill" path 2 has zero action. 

probability distribution P(2, x, t j 2o, Xo, to) for the position and velocity of 
the particle. To deal with the non-Markov process (~ > 0) defined above, 
we shall use a path-integral formulation of the Langevin equation, which 
is well suited to the weak noise limit via a steepest descent calculation. A 
detailed discussion of the path-integral formulation for non-Markov 
processes is given in ref. 22. 

Our principal results are for the extremal "action" S, which determines 
the escape rate in the weak noise limit via F ~  e x p ( - S / D ) .  The evaluation 
of the prefactor is beyond the scope of the present paper: it requires the 
inclusion of small fluctuations around the extremal path, as well as multi- 
instanton contributions. Analytic results for S are derived, for general 
potentials, for small m and 3, and also for general m and large 3. For any 
specified potential, S may be found numerically for arbitrary values of m 
and ~ with the proviso that r > 2m for m > 1/4v"(a). [This restriction is a 
technical one, associated with the requirement (see below) that the instanton 
solution be nonoscillatory.] In this paper all numerical results are obtained 
for the quartic potential, V(x)= -x2/2 + x4/4. 

2. T H E  I N S T A N T O N  A P P R O A C H  

In this section, a path-integral representation is given for the condi- 
tional probability that the particle is in the right-hand well at time T, given 
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that it was at point a of Fig. 1 (with zero velocity and acceleration) at time 
zero, and the equation which determines the most probable ("instanton") 
path is derived. The equation is solved, analytically and numerically, in 
subsequent sections. We shall not dwell on the formal subtleties involved 
in setting up the path integral, since these have been discussed in detail 
elsewhere(=): this paper is concerned with results rather than formalism. 

For Gaussian noise with correlator defined by (2), the noise proba- 
bility weight is given by (11'22/ 

(3) 

For a more general correlator, the functional in (3) would contain terms 
with higher order derivatives of ~. In this sense, the exponential correlator 
in (2) represents the simplest non-Markov process. (22/ We now use (3) to 
express the probability weight for the paths {x(t)} by expressing ~ in terms 
of x using (1): 

P[x] oc J[x] exp ( -  Six] /D)  (4) 

where the "Onsager-Machlup functional," or "action," S[x] is 

f 
o o  

S[x] =(1/4) dt { [ m 2 + 2 +  V'(x)]2 + z2[my( + 2 + V"(x)2] 2 } 
oO 

(5) 

The Jacobian J[x] of the transformation is independent of D and will not 
alter the leading small-D expression in the exponent in (4). (m 

The construction of a conditional probability density requires, in 
general, an adequate specification of the process under consideration/22) 
For the system described by (1) and (2) one needs, in principal, to impose 
three conditions at the earlier time, e.g., the values of x, 2, and 2 (or, 
equivalently, of x, 2, and 4). One way to see this is to observe that the 
noise correlator (2) is generated by the Ornstein-Uhlenbeck process 

r~= - r  (6) 

where t/is a white noise of strength D, i.e., 

(tl(t) tl(t') ) = 2 D f ( t -  t') (7) 

provided the initial condition on ~ is imposed in the distant past. Elimi- 
nating ~ then yields the Langevin equation 

~[m:e + ~ + v"(z)~]  + m ~  + sc + V ' ( x )  = ~(t)  (8) 
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from which a conventional Fokke~Planck equation can be derived for the 
conditional probability P(x, 2, 2, t]Xo, 2o, 2o, to). The "simplest colored 
noise" (2) effectively enlarges the dimension of the space by one. This 
Fokker-Planck equation is not, however, a convenient starting point for 
the calculation of escape rates. The latter emerge cleanly, however, from 
the path-integral formulation below. 

While the above discussion is important for the calculation of general 
conditional probabilities, the calculation of escape rates is simplified by the 
fact (see below) that the dominant instanton paths begin and end at 
turning points of the potential, and have the property that 2 and all 
higher derivatives vanish at these turning points. Therefore, as far as the 
calculation of escape rates is concerned, we need only specify the position 
of the particle. In this connection, the alert reader will have noticed that 
the probability weight P[x] derived from (7) and (8), using P[//]oc 
exp[ - (1 /4D)  S dt//2], would be described by an action Six]  which differs 
from (5) by the appearance of a "cross term" 2 r ~  [where ~ means the 
left-side of Eq. (1)] in the integrand. This term, however, is a perfect 
differential, whose integral yields boundary terms which vanish for an 
instanton path..The manner in which the two forms for Six]  yield equiva- 
lent results more generally is discussed in detail in ref. 22. 

With the above remarks in mind, the conditional probability density 
for the particle to be at the point c of Fig. 1 at time 7"/2, given that it was 
at point a at time -T/2 ,  is given by the path integral 

~x(T/2)=o d[x] J[x] exp( -S[x] /D)  P(c, T/21a, - T/2) oc ~x(- r/2)~ a (9) 

In the weak noise limit (D ~ 0) the path integral may be evaluated by a 
steepest descent calculation, i.e., we identify the path xc(t) that minimizes 
S[x]. This path xo is the desired instanton solution. The action S[xc] 
associated with xc determines the escape rate, since to leading order for 
small D, the right-hand side of (9) has the form const- Texp(-S[xo]/D) ,  
the factor T being a consequence of the invariance (for T ~  o0) of the 
action Six]  under time translations311,13) Identifying the coefficient of T as 
the escape rate F yields 

F ~  exp( - S[xc]/D ) (lo) 

Evaluation of the prefactor in (10) requires consideration of fluctuations 
about the extremal path x o, multi-instanton contributions, and inclusion of 
the Jacobian factor J[xc]. 

We now proceed with the evaluation of S[xc]. To simplify the sub- 
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sequent calculations, we make a change of variable in the action, Eq. (5), 
from x(t) to y(x), where y = 2. The action then has the form 

S[y]  = (1/4) f f  (dx/y){[myy'  + y + V'(x)] 2 

+ zZyZ[m(yy,,+ y,2) + y , +  V,,(x)]2} (11) 

where a and b are the positions of the local minimum and unstable maxi- 
mum of the potential, respectively (see Fig. 1). We have fixed the upper 
limit of the integral as b rather than c, since the escape rate is actually 
determined from the rate to reach the unstable maximum. The passage of 
the particle from b to c proceeds by a "free descent," i.e., it is described by 
Eq. (1) with ~ = 0. (11/The relevant instanton for the determination of F is 
thus the "uphill" path, labeled 1 in Fig. 1. The "downhill" path, labeled 2, 
is also an instanton, but has zero action. Henceforth, therefore, we consider 
only the instanton associated with the uphill path. 

The reasons for using x instead of t as independent variable are 
twofold: ( i ) the differential equation that results from extremizing the 
action is reduced by two orders, and (ii) numerical solution of the equation 
is now over the finite interval (a, b), whereas in the x(t)  variables the 
solution was over an infinite interval ( - c o ,  co). 

To minimize S[y] ,  we apply the extremal condition 6 S [ y ] / f y ( x ) =  O. 
This yields the following fourth-order, nonlinear, ordinary differential 
equation for yc(x)--the instanton path in y(x)  space: 

0 = 1 - (V'/y)  2 - 2mV" - -  mZ( j  2 + 2yy") - "c2(y '2 q- 2yy" + 2yV"  - V ''2) 

+ 2m~Z(2yy"V '' + y'2V" + 2yy'V'" + yZV"') 

+ rnZ~2(9y2y,,2 + y,4 + 16yy,2y,, + 12yZy,y,,, + 2y3y,,,,) (12) 

Numerical solution of Eq. (12) requires specifying four boundary con- 
ditions. Two of these, y (a )=  0 = y(b), follow from the condition that the 
particle start and finish at rest. For the remaining two, we specify the 
values of the derivatives at the endpoints, i.e., y'(a) and y'(b). These can be 
deduced directly from the sixth-order equation for x(t) obtained from the 
extremal condition 6S[x] /6x ( t )=O for the action S i x ]  given by (5). 
Linearizing this equation in ( x -  a) yields, for small ( x -  a), a general solu- 
tion which is a sum of six exponentials, x - a = Z6= 1 ~i exp(2it), with rate 
constants {2i} given by Eq. (26) below. The boundary condition that x - a  
vanish for t ~ - c o  requires that only the three terms for which 2 i has a 
positive real part will be present. Furthermore, the 2 with the smallest 
positive real part, say 21, will dominate asymptotically. We will work in a 
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regime (see the discussion in Section VI below) where 21 is purely real. 
Then x - a ~ exp(21 t) for t --, - o e  implies y - 2 --* 2~(x - a). This gives the 
boundary condition y ' (a)= 2~. A similar linearization for x near b yields 
the value of y'(b) in terms of the negative eigenvalue with smallest 
magnitude of the linear equation for ( b - x ) .  

With these boundary conditions, Eq. (12) may be solved numerically 
with a specific choice of potential for general values of m and ~. However, 
we shall first look at solutions for yc with a general potential for various 
limits of m and z. 

3. WHITE NOISE MASSIVE CASE ( m > 0 ,  1"=0) 

The differential equation for Yc now has the form 

1 - (V'/y) 2 - 2mV" - m2(y '2 + 2yy") = 0 (13) 

and the associated action is 

b 

S [ y ]  = (1/4) fa (dx/y)[myy' + y + V'(x)]  2 (14) 

Now consider the quantity u ( x ) = - m y y ' - y +  V'(x). Inserting this into 
Eq. (14), we find 

b b 

S[y]  = f .  dx (y + u) + ( l/4) fa dxu2/y 

Using the definition of u and the boundary conditions y(a) = 0 = y(b), we 
have 

b 

S [ y ]  = A V+ (1/4) fa dx uZ/y 

where AV=_ V ( b ) -  V(a) is the height of the potential barrier. Thus, to 
minimize the action we must set u = 0, giving us a first-order differential 
equation for yc and a simple, mass-independent form for the action, i.e., 

mycy'~--yc+ V'(x) = 0 (15) 

and 

S[yc] = A V(x) (16) 

The fact that S[yc] is independent of the mass for white noise can be 
understood intuitively from the idea that the escape rate should be propor-  
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tional to the equilibrium probability density to find the particle at the top 
of the barrier. For white noise, the latter is given by the Boltzmann 
distribution, and is m independent. The prefactor in Eq. (10) does, 
however, depend on  m. 04-2~ 

In the next section we shall see that noise color (i.e., r > O) introduces 
mass dependence into the action. 

4. S M A L L - m  E X P A N S I O N  FOR GENERAL T 

In this section we wish to write the instanton action in the form 

S = So(z ) Jr- mSI (T  ) -I- O ( m  2) (17) 

The first term corresponds to the action with zero mass and has been 
extensively studied in ref. 11. For m = 0, the instanton path yo(x)  satisfies 

1 - (V ' / y )  2 - T2(y '2 + 2yy" + 2 y V " -  V "2) = 0 (18) 

The solution of this equation, Yo, may be inserted into the m = 0 action to 
give So(z). Since the action has been extremized with respect to y, we may 
find SI(T) by inserting the lowest order solution Yo into the terms of the 
action, Eq. (11), which are linear in m. Therefore, S~ is given by 

b 
SI(T ) ~--- (1/2) f ,  dx [Y'o V' + z2yo V " ( y  0 y~ + y•2)] (19) 

The results of Section 3 indicate that lim~ ~ 0 SI(T) = 0. We may also see the 
large-r behavior of $1 by considering the physical content of the Langevin 
equation. (1~ For r large, the noise fluctuates very slowly, and may be 
viewed as a quasistatic force which has the effect of producing an effective 
potential that gradually "tilts" with time. The particle then simply adjusts 
its position at each instant so that it remains in the local minimum of 
the effective potential. Thus, the position of the particle with time is 
independent of the mass and we expect lime ~ ~ SI(T)= 0. [-Strictly, since 
So(z) increases linearly with T for large T, (9ql) this intuitive argument 
implies only the weaker result l i m ~  o~ S l ( r ) / r - - 0 .  However, the numerical 
results below confirm the stronger result given above.] 

To obtain the form of S~ for general T, we solve Eq. (19) numerically 
for the typical case of the quartic potential 

V(x)  = - x 2 / 2  + x4/4 (20) 

for 10 2 4.[7 ~ 10 4. Numerical evaluation of the integral in Eq. (19) yields 
the results shown in Fig. 2. The function Sl(z) is small compared to So(z) 



Escape Rate of a Particle Driven by Colored Noise 365 

"03 

02 

4_.__5 
(,,~ 

.01 

I 

-2  -1 0 1 2 3 /,, 
[og~o% 

Fig. 2. The function Sj(r), defined by the expansion S=So(z)+mSl(z)+O(m 2) of the 
instanton action in Ibowers of the particle mass, for the quartic potential given by Eq. (20). 
The ordinate has been normalized by the white-noise action A V (= 1/4). S~ vanishes as r 2 for 

--, 0, and as z - 1/3 for ~ ~ or. 

[which has min imum value S0(0 )=  A V= 1/4] for the whole range of  z, 
with a max imum value of  ~7 .2  x 10 -3 at ~ ~ 1.6. For  z ~ 0, $1 vanishes as 
T2/20 [see Eq. (25)]. The large-r behavior  is consistent with S l ~ z  -~/3, 
suggesting that  the m dependence first enters only at the third term of the 
expansion (~I) of  S(z) in powers of  z -2/3 

5. S M A L L - T  E X P A N S I O N  F O R  G E N E R A L  m 

We now perform an analogous expansion to that in Section 4, but  for 
general m and small r, i.e., we wish to write the action in the form 

S[yr = So(m) + v2S~(m) + O(z 4) (21) 

The first term is the action for the massive white-noise case and, as shown 
in Section 3, it has the value A V, For  z = 0 ,  the instanton path yo(m) 
satisfies Eq. (15). (Note  that  the subscript zero indicates r = 0  in this 
section, not  m = 0 . )  Since the action has been extremized, we may  find 
Sl(m) by inserting the lowest order  solution Yo into the terms of  the action, 
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Eq. (11), which have a coefficient of z2. After some manipu la t ion  using 
(15), one finds 

b 

Sl(m) = ~ dx Yo y;2 (22) J~ 

We m a y  find the form of Sl(m ) by solving Eq. (15) numerical ly for 
given m, inserting the solution into (22), and evaluat ing the integral 
numerically.  Figure 3 shows the results of this procedure  for the quart ic  
potent ia l  (20). No te  that  in practice the range of m for which this proce- 
dure works  well is restricted. This is because the ins tanton solution has an 
oscil latory c o m p o n e n t  in the (x, t) plane for m > mc = 1/4V"(a) = 1/8 fo r  
the potent ial  (20). This oscil latory behavior ,  which is associated with com- 
plex rate constants  {2i} in the solution for x(t) l inearized near  x = a (see 
the discussion at the end of Section 2, and Section 6 below), implies a pa th  
in the (x, y)  plane tha t  spirals out f rom the initial point,  x = a, y = 0, i.e., 
the ins tanton  solut ion y(x) becomes multivalued.  In principle, one can 
c i rcumvent  this difficulty by working  with the original (x, t) variables. In 
practice, however,  the C O L S Y S  package  (23) which was used to solve the 
differential equat ion  does not  converge well in the oscil latory regime. 

The  function Sl(m),  Eq. (22), may  be evaluated analytically as a 
power  series in m, Insert ing Y=2_,n=o Yn into (15) and equat ing coef- 
ficients order  by order  in m gives 

y = V' + mV'V" + rn2( V'2V'"+ 2V 'V  ''2) + O(m 3) (23) 

/ 

�9 52 ~ 

"51 

�9 5 I i I I 
0 '05 .1 

m 

Fig. 3. The function St(m) (solid curve), defined by the expansion S= So(m ) + z2Sl(m)+ 
O(z4), for the quartic potential (20). The ordinate has l~een normalized by the white-noise 
action A V (= 1/4). The broken curve shows the result obtained from the first three terms of 
the small-m expansion, given by Eq. (25). For reasons discussed in the text, the results are 
limited to m < m c = 1/8. 
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Substituting this expansion for Y0 in (22) yields 

b 

Sl(m)= fa dx [V'V"2 + mV'V "3 

+(1/2)m2V'ZV"(2V'V"'+ V"V'")+O(m3)] (24) 

For the quartic potential (20) this becomes 

S~(m) = A V(1/2 + m/5 -- m2/5 + O(m3)) (25) 

The expansion (25) is included in Fig. 3 along with the numerical results. 
The first three terms in the m expansion provide a very good approxima- 
tion over the whole range m < m c = 1/8. 

6. R E S U L T S  FOR G E N E R A L  m A N D  r 

In the above sections we have calculated the action in the form of 
various expansions, i.e., we have taken one or both of the parameters m 
and z to be small. However, we may solve the full differential equation (12) 
numerically for more general values of the parameters. In practice, as 
discussed above, numerical solution requires restrictions on the relative 
sizes of the two parameters, such that in (x, t) space the instanton path 
is nonoscillatory. Oscillations only occur for m>mc, but even if this 
condition pertains, they may be "damped out" if z is large enough. 

To see this, we linearize the differential equation for x(t) obtained 
from Eq.(9) via the substitution y = 2  [or directly from (5) via 
6S[x]/6x(t) =03 around the stable fixed point x =  a. As discussed at the 
end of Section 2, this equation is sixth order, and therefore has six 
independent solutions (for x - a )  of the form exp(2it) ( i=  1 ..... 6), with 
rate constants 

1 1 
2i= -+~' + ~m {1 _+ [ 1 - 4 m V " ( a ) ]  1/2} (26) 

For t ~ - o% the instanton will be a linear combination of the three terms 
for which 2i has positive real part, and the term with smallest positive real 
part will dominate asymptotically. In the overdamped regime 4mV"(a)< 1, 
all three 2's are real, and x(t) is nonoscillatory for all r. Even in the under- 
damped regime, however, where two of the three relevant 2's are complex, 
the real one (l /r)  still dominates for r > 2 m ,  giving (asymptotically) 
nonoscillatory behavior. We emphasize that the reason for the above 
discussion is a technical limitation of our differential-equation-solving 
package, ~23~ which finds difficulty in converging onto oscillatory solutions: 

822/59/1-2-24 
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Fig. 4. The instanton action S, as a function of v for various m, plotted as (S-So)/S~ 
versus logl0z. The results pertain to the quartic potential (20). So=AV=I/4 and 
S~o = (2/27)~ are the white-noise and targe-v limits of S, respectively. 

this discussion does not imply any fundamental difficulties in the physics of 
the underdamped regime. 

Figure 4 contains representative results for the action as a function of 
for various m. All results are for the quartic potential (20), and are 

plotted in the form ( S -  So)/S~ o versus loglo ~, where So = A V = 1/4 is the 
white-noise action, and Soo = (2/27)~ is the large-T form of the action/9 11) 
The range of -c presented for larger rn is limited for the reasons given 
above. The most striking feature of the results is once more the relative 
insensitivity of the action to the mass m. 

7.  S U M M A R Y  

By using a path-integral formulation of the Langevin equation, the 
escape rate of a massive particle, driven by colored noise, over a potential 
barrier has been calculated for the first time. In the weak noise limit, the 
escape rate has the form F ~ e x p ( - S / D ) .  For  white noise, the action S has 
the value A V, independent of m. Expansions of S for one or both of m and 

small have been derived for general potentials, while numerical results 
have been obtained for more general situations for one specific potential. 
We find that a non-Markov process (z > 0) brings mass dependence into 
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the ac t ion  S, b u t  the effect is n u m e r i c a l l y  qui te  smal l  for the range  of m 
which  we have  been  able  to probe .  A n  in te res t ing  open  p r o b l e m  is to devise 

a t e chn ique  for exp lo r ing  the  regime of ex t reme l ight  d a m p i n g .  
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